

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code:MACHINE LEARNING(20MC9134)

Course & Branch: MCA

Year &Sem: II-MCA &II-Sem

Regulation: R20

UNIT –I INTRODUCTION TO MACHIENE LEARNING

1	a)	Define machine learning.								[L1][CO1]	[2M]
	b)	Give five 1	real world	examples	where mach	ine learning	is used.			[L2][CO1]	[10M]
2	Defi	fine the following Learning									
	a)	Learning								[L1][CO1]	[3M]
	b)	Version Sp	pace							[L1][CO1]	[3M]
	c)	Hypothesi	S							[L1][CO1]	[3M]
	d)	Concept								[L1][CO1]	[3M]
3	a)	What do you mean by a well –posed learning problem?								[L1][CO1]	[3M]
	b)	What are the important features that are required to well -define a learning									[3M]
		problem?									
	c)	Give three	[L1][CO1]	[6M]							
4	Defi	ne the follow	wing								
	a)	Deductive	Learning							[L2][CO1]	[2M]
	b)	Inductive	Learning							[L2][CO1]	[2M]
	c)	Biased Hy	pothesis							[L2][CO1]	[2M]
	d)	Unbiased 1	[L2][CO1]	[2M]							
	e)	Inductive	bias							[L2][CO1]	[4M]
5											
	a)	Explain Fi	nd-S Algor	rithm						[L2][CO2]	[6M]
	b)	Explain Ca	andidate El	imination al	gorithm					[L2][CO2]	[6M]
6		Design a c	heckers le	arning prol	blem					[L6][CO2]	[12M]
7		Consider t	he followi	ng training	, set						
		example	citations	size	in Library	price	editions	buy			
		1	some	small	no	affordable	many	no			
		2	many	big	no	expensive	one	yes			
		3	some	big	always	expensive	few	no			
		4	many	medium	no	expensive	many	yes			
		5	many	small	no	affordable	many	yes			
	a)	How many	y possible	instances v	vill be there	in the instar	ice space of	the a	bove	[L1][CO1]	[3M]
	1 \	training se	t'?	11 11 00			• .• -	-	•	H 1110042	503.53
	b)	How many	y syntactic	ally differe	ent hypothes	es will be th	ere in the h	ypoth	esis	[L1][CO1]	[3M]
		space ?									

Course Code: 20MC9134

	c)	How	many semanticall	[L1][CO1]	[3M]					
		spac	e?							
	d)	Find	Maximally Specif	[L1][CO1]	[3M]					
		algo	rithm							
8		List	and explain perspe	ctives and issues in	Machine Learnin	g.				
9	a)	Defi	ne concept learning	g.			[L1][CO1]	[4M]		
	b)	Exp	lain concept learnir	ng as a search proble	em.		[L2][CO1]	[4M]		
	c)	Wha	at do you mean by	[L2][CO1]	[4M]					
		with	an example.							
10	Find	vers	ion space for the	following training	g set using Cand	lidate Elimination	[L3][CO2]	[12M]		
	algo	rithm								
	Sn	0	Size	Color	Shape	Class/Label				
	1	Big Red Circle N		No						
	2	2 Small Small		SmallRedSmallRed		Red	Triangle	No		
	3					Circle	Yes			
	4		Big Blue (Circle	No				
	5		Small	Blue	Circle	Yes				

R20

UNIT –II DECISION TREE LEARNING

1	a)	What is a decision tree?		[L1][CO3]	[3M]					
	b)	How a decision tree can be constructed?		[L1][CO3]	[3M]					
	c)	What are its strengths and weaknesses		[L1][CO3]	[6M]					
2	a)	What is the entropy of this collection of training examption target function classification?	ples with respect to the	[L1][CO3]	[3M]					
	b)	What is the information gain of al and a2 relative to these	training examples	[L1][CO3]	[4M]					
	c)	Construct decision tree for the given dataset		[L6][CO3]	[5M]					
		Instance Classification	al a2							
		1 +	ТТ							
		2 +	ТТ							
		3 -	T F							
		4 +	F F							
		5 -	F T							
		6 -	F T							
3	a)	Describe hypothesis space search in decision tree learning	[L2][CO3]	[9M]						
	b)	What are the capabilities and limitations of ID3 algorithm	?	[L2][CO3]	[3M]					
4	a)	Explain Entropy.	[L2][CO3]	[6M]						
	b)	Explain Information gain. [L2][C								
5		How do you estimate the accuracy of a Hypothesis?[L2][CO3]								
6	a)	What is meant by Sampling?		[L1][CO4]	[6M]					
	b)	What are the different methods of sampling? Discuss.		[L1][CO4]	[6M]					
7	a)	What is a Confidence Interval?		[L1][CO4]	[6M]					
	b)	How do you construct a Confidence Interval?	[L2][CO4]	[6M]						
8		Compare different machine learning algorithms?[L5][CO3]								
9	a)	What is Hypothesis testing?[L1][CO3][d								
	b)	How Hypothesis testing can be done?		[L2][CO3]	[6M]					
10	a)	Explain ID3 Algorithm.		[L2][CO3]	[6M]					
	b)	What are its characteristics?		[L1][CO3]	[6M]					

UNIT –III BAYESIAN LEARNING

1		The follow	wing data set cont	s played or	[L3][CO4]	[12M]				
		Cool, Hig	h, Strong>	issiner, iniu t	the play prediction	101 the day <	Sullity,			
		DAY	OUTLOOK	TEMP	HUMIDITY	WIND	PLAY			
		Day 1	Sunny	Hot	High	Weak	NO			
		Day 2	Sunny	Hot	High	Strong	NO			
		Day 3	Overcast	Hot	High	Weak	YES			
		Day 4	Rain	Mild	High	Weak	YES			
		Day 5	Rain	Cool	Normal	Weak	YES			
		Day 6	Rain	Cool	Normal	Strong	NO			
		Day 7	Overcast	Cool	Normal	Strong	YES			
		Day 8	Sunny	Mild	High	Weak	NO			
		Day 9	Sunny	Cool	Normal	Weak	YES			
		Day 10	Rain	Mild	Normal	Weak	YES			
		Day 11	Sunny	Mild	Normal	Strong	YES			
		Day 12	Overcast	Mild	High	Strong	YES			
		Day 13	Overcast	Hot	Normal	Weak	YES			
		Day 14	Rain	Mild	High	Strong	NO			
	,		~							
2	a)	Define VC	dimension.					[L1][CO4]	[4M]	
	b)	How do y	ou measure the P	ower of a Cla	assifier with VC D	imension?		[L2][CO4]	[8M]	
3	a)	Briefly ex	plain the mistake	bound mode	el for learning.			[L2][CO4]	[7M]	
	b)	Explain M	laximum Likelih	ood and Leas	st Squared Error H	ypotheses.		[L2][CO4]	[5M]	
4		Define the	e following							
	a)	Naive Bay	yes classifiers					[L1][CO4]	[6M]	
	b)	Gibbs algo	orithm					[L1][CO4]	[6M]	
5		Explain 'I	How To Apply N	aive Bayes' C	Classifier On Text	Data'		[L2][CO4]	[12M]	
6		Explain 'I	Naive Bayes Theo	orem with ex	ample'.			[L2][CO4]	[12M]	
7		Explain 'T	The concept of Pr	obably Appr	oximately Correct	learning'.		[L2][CO4]	[12M]	
8		Clearly Ex	xplain "Minimun	description	length principle"			[L2][CO4]	[12M]	
9	a)	Estimate of for the spe	conditional proba	bilities of ea H} using the	ch attributes {colo	r, legs, heigl table	nt, smelly}	[L2][CO4]	[6M]	
	b)	Using the	se probabilities e	estimate the	probability values	for the new	instance -	[L2][CO4]	[6M]	
		(Color=Green, legs=2, Height=Tall, and Smelly=No).								

Course Code: 20MC9134

Cours	se Co	de: 20MC	C9134									R20			
		No	Color		Legs		Height		Smelly	Species]				
		1	White	White Green Green		3			Yes	М	1				
		2	Green			n 2			Tall		No	М			
		3	Green				Short	Yes		М	\neg				
		4	White		3		Short Short		Yes	М	1				
		5	Green						No H		-				
		6	White		2		Tall		No	Н	1				
		7	White		2		Tall		No	Н	1				
		8	White		2		Short		Yes	Н	1				
10	Apply Naïve Bayes Classifier for the table below [L2][CO4] [12]											[12M]			
	Ex	Example No. Color			Тур		pe Origin		gin	Stolen?	Stolen?				
	1			Red		Spo	orts Dor orts Dor	nestic	Yes No						
	2			Red		Spo		nestic							
	3			Red		Spc	orts	Don	nestic	Yes					
	4			Yellow	7	Spo		Don	nestic	No					
	5			Yellow	v Spo		orts Imp		orted	Yes					
	6 Yellow		v SU		JV Imp		orted	No							
	7	7 Yellow		v SU		V	Imported		Yes						
	8 Yellow 9 Red		w SUV		V	Don	nestic	No							
					V	Imp	orted	No							
	10			Red		Spo	orts	Imp	orted	Yes					
	and	decide v	whether	the nev	v car w	ith attri	butes (Red, S	UV, Dome	estic) can be s	tolen				
	or not.														

UNIT –IV

LINEAR MODELS FOR REGRESSION

1		Give a detail note on kernel methods?	[L1][CO6]	[12M]
2	a)	Explain the relationship between Linear regression and Machine Learning	[L2][CO6]	[6M]
	b)	The sales of a company (in million dollars) for each year are shown in the table	[L2][CO6]	[6M]
		below. x (year) 2005 2006 2007 2008 2009		
		y (sales) 12 19 29 37 45		
		i) Find the least square regression line $y = a x + b$.		
		ii) Use the least squares regression line as a model to estimate the sales of the company in 2012.		
3		Compare classification with regression with an example	[L2][CO6]	[6M]
4	a)	List and explain features of Bayesian learning methods.	[L1][CO6]	[10M]
	b)	What are the drawbacks of Bayesian learning methods.	[L1][CO6]	[2M]
5	a)	What is a Linear Regression Model?	[L1][CO6]	[6M]
	b)	What are the different techniques to create a Linear Regression Model?	[L1][CO6]	[6M]
6		What are Radial Basis Function Networks	[L1][CO6]	[12M]
7	a)	What is a Gaussian process?	[L1][CO6]	[6M]
	b)	What are the advantages and disadvantages of Gaussian Processes?	[L1][CO6]	[6M]
8		Describe the Linear basis function models.	[L2][CO6]	[12M]
9		Explain the Bias-Variance decomposition	[L2][CO6]	[12M]
10		Consider the following set of points: $\{(-2, -1), (1, 1), (3, 2)\}$		
	a)	Find the least square regression line for the given data points.	[L1][CO6]	[6M]
	b)	Plot the given points and the regression line in the same rectangular system of axes.	[L1][CO6]	[6M]

UNIT –V

APPROXIMATE INFERENCING

1		Define the following		
-	a)	Stochastic process	[L1][CO5]	[6M]
	b)	Bayes' theorem	[L2][CO5]	[6M]
2		Define the following		
-	a)	Markov chain	[L1][CO5]	[6M]
	b)	Markov model	[L1][CO5]	[6M]
3		Describe the following in details		
	a)	Approximate inference methods	[L2][CO5]	[4M]
	b)	Bayesian inference method	[L2][CO5]	[8M]
4		Explain the following		
	a)	Linear regression	[L2][CO5]	[6M]
	b)	Logistic Regression	[L2][CO5]	[6M]
5		Describe the following in detail		
	a)	Reinforcement Learning	[L2][CO5]	[4M]
	b)	Q Learning	[L2][CO5]	[4M]
	c)	Temporal difference Learning	[L2][CO5]	[4M]
6	a)	What is Hidden Markov Model (HMM)?	[L1][CO5]	[6M]
	b)	Explain the components of a Hidden Markov Model (HMM	[L2][CO5]	[6M]
7		Discuss any four real-world examples where the hidden Markov models are used.	[L2][CO5]	[12M]
8		What is Viterbi algorithm and what is its purpose? Explain with an example.	[L1][CO5]	[12M]
9		Explain "Linear Dynamical System ".	[L1][CO5]	[12M]
10	a)	What are Gaussian Mixture Models?	[L1][CO5]	[6M]
	b)	What are some real-world problems which can be solved using Gaussian mixture models?	[L1][CO5]	[6M]

Prepared by: Mr. P. Rameswara Anand Assosciate Professor/MCA